Measurable choice and the invariant subspace problem
نویسندگان
چکیده
منابع مشابه
Measurable Choice and the Invariant Subspace Problem
In [1], J. Dyer, A. Pedersen and P. Porcelli announced that an affirmative answer to the invariant subspace problem would imply that every reductive operator is normal. Their argument, outlined in [1], provides a striking application of direct integral theory. Moreover, this method leads to a general decomposition theory for reductive algebras which in turn illuminates the close relationship be...
متن کاملThe Invariant Subspace Problem
Notes for my lectures in the PSU Analysis Seminar during the winter and spring terms 2013-14, with special emphasis on the 1972 results of Victor Lomonosov.
متن کاملThe Invariant Subspace Problem
The notion of an invariant subspace is fundamental to the subject of operator theory. Given a linear operator T on a Banach space X, a closed subspace M of X is said to be a non-trivial invariant subspace for T if T (M) ⊆M and M 6= {0}, X. This generalizes the idea of eigenspaces of n×n matrices. A famous unsolved problem, called the “invariant subspace problem,” asks whether every bounded line...
متن کاملThe Invariant Subspace Problem
Heeft elke begrensde lineaire operator, werkend op een Hilbert ruimte, een niet-triviale invariante deelruimte? Het antwoord is positief voor zowel eindig-dimensionale ruimtes als voor niet-separabele ruimtes. Het onopgeloste probleem voor het geval daar tussenin, dus voor separabele Hilbert ruimtes staat bekend als het invariante deelruimte probleem. Professor B.S. Yadav van de Indian Society ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1974
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1974-13560-3